Strongly correlated states of ultracold rotating dipolar Fermi gases.

نویسندگان

  • Klaus Osterloh
  • Nuria Barberán
  • Maciej Lewenstein
چکیده

We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground states are subject to a competition between distinct bulk-edge configurations. This effect obscures their description in terms of composite fermions and leads to the appearance of novel quasihole ground states. In the presence of dipolar interactions, the principal Laughlin state at filling nu=1/3 exhibits a substantial energy gap for neutral (total angular momentum conserving) excitations and is well-described as an incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional quantum Hall states in ultracold rapidly rotating dipolar fermi gases.

We demonstrate the experimental feasibility of incompressible fractional quantum Hall-like states in ultracold two-dimensional rapidly rotating dipolar Fermi gases. In particular, we argue that the state of the system at filling fraction nu = 1/3 is well described by the Laughlin wave function and find a substantial energy gap in the quasiparticle excitation spectrum. Dipolar gases, therefore, ...

متن کامل

Wigner Crystallization in Rapidly Rotating 2D dipolar fermi gases.

We study the competition between the Wigner crystal and the Laughlin liquid states in an ultracold quasi-two-dimensional rapidly rotating polarized fermionic dipolar gas, and find that the Wigner crystal has a lower energy below a critical filling factor. We examine the quantum crystal to liquid transition for different confinements in the third direction. Our analysis of the phonon spectra of ...

متن کامل

Ultracold Molecules from Ultracold Atoms: Interactions in Sodium and Lithium Gas

The thesis presents results from experiments in which ultracold Sodium-6 and Lithium-23 atomic gases were studied near a Feshbach resonance at high magnetic fields. The enhanced interactions between atoms in the presence of a molecular state enhance collisions, leading to inelastic decay and loss, many-body dynamics, novel quantum phases, and molecule formation. Experimental data is presented a...

متن کامل

The physics of dipolar bosonic quantum gases

This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the longrange, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the meanfield r...

متن کامل

Spontaneous inhomogeneous phases in ultracold dipolar Fermi gases

We study the collapse of ultracold fermionic gases into inhomogeneous states due to strong dipolar interaction in both 2D and 3D. Depending on the dimensionality, we find that two different types of inhomogeneous states are stabilized once the dipole moment reaches a critical value d > dc: the stripe phase and phase separation between high and low densities. In 2D, we prove that the stripe phas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 99 16  شماره 

صفحات  -

تاریخ انتشار 2007